

Appendix F Greenfield Run Off Calculations

Print

HR Wallingford

Site characteristics

Total site area (ha): 27.2

Growth curve factor 200 years:

Calculated by:	Michael Turner
Site name:	Great Barr
Site location:	Birmingham

Runoff estimation approach FEH Statistical

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria Re in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS Date: (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details	
Latitude:	52.55608° N
Longitude:	1.94832° W
Reference:	4163353216
Date:	Dec 01 2022 15:56

(1) Is Q_{BAR} < 2.0 l/s/ha?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):		138.73
1 in 1 year (l/s):		115.15
1 in 30 years (l/s):		277.47
1 in 100 year (l/s):		356.55
1 in 200 years (l/s):		421.75

3.04

3.04

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Methodology Calculate from BFI and SAAR Q_{MED} estimation method: BFI and SPR method: Specify BFI manually HOST class: N/A BFI / BFIHOST: 0.344 Q_{MED} (I/s): Q_{BAR} / Q_{MED} factor: 1.12 Default Edited Hydrological characteristics SAAR (mm): 708 708 Hydrological region: 4 4 Growth curve factor 1 year: 0.83 0.83 Growth curve factor 30 years: 2 2 Growth curve factor 100 years: 2.57 2.57

Notes

Lo

Appendix G Surface Water Drainage Calculations

CAL	JSEVAY	ngineering Limited	File: Flow calcs Network: Storn Michael Turne 30/08/2023	m Network	Page 1	
		<u>Design</u>	<u>Settings</u>			
	Rainfall Me Return Per Additiona Time of Er Maximum Time of Concentrat Maximum Rainfa	iod (years) 100 al Flow (%) 0 CV 0.750 atry (mins) 4.00 ion (mins) 30.00	Minimum Prefe Include	nimum Velocity (r Connection T Backdrop Height rred Cover Depth Intermediate Gro practice design r	ype Level Soffits (m) 0.200 (m) 1.200 und √	
		No	odes			
	Name	Area T of E Ad (ha) (mins) Infl (L		Easting Northin (m) (m)	ng Depth (m)	
	Catchment A Basin Attenuation B Basin Attenuation C Basin Catchment AA Basin	0.6955.000.3405.000.9705.000.6955.00	148.500 152.500 153.000 147.000	23.352 94.29 23.493 68.74 28.425 60.40 21.488 81.55 28.622 47.00	 49 1.000 57 1.300 25 1.000 	
	Catchment D		0.0 154.500	28.622 47.80	02 1.000	
			nks			
ne 00 Catc	US DS Node Node hment A Basin Catchment AA Bas	Length ks (mr (m) n sin 15.000 0.	n) / US IL (m) 600 147.500	DS IL Fall (m) (m) 146.000 1.500	Slope Dia T of C (1:X) (mm) (mins) 10.0 225 5.06	Rai (mm,
	Name Vel Cap (m/s) (l/s 1.000 4.161 165.) (l/s) Depth l (m)	DS Σ Area Depth (ha) (m) 0.775 0.695	Σ Add Pro Inflow Depth (I/s) (mm) 0.0 122	Pro Velocity (m/s) 4.292	
		<u>Pipeline</u>	<u>Schedule</u>			
	Link Length Slope Dia (m) (1:X) (mm) 1.000 15.000 10.0 225	Link US CL Type (m) Circular 148.500	(m) (ı	Depth DS CL m) (m) 0.775 147.000	DS IL DS Depth (m) (m) 146.000 0.775	
	Link 1.000 Catch	US Nod Node Typ ment A Basin Juncti	e Noo	de Typ	e	
		Manhole	<u>Schedule</u>			
	Node Easting (m) Catchment A Basin 23.352	Northing CL (m) (m) 94.296 148.500	Depth Con (m) 1.000	nections Lin	k IL Dia (m) (mm)	
			1.000	0 1.00	0 147.500 225	
	Attenuation B Basin 23.493	68.749 152.500	1.000	0		

				30/08/2					
			<u>Manhole</u>	Schedule	<u>9</u>				
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Conne	ections	Link	IL (m)	Dia (mm)
Attenuation C Basin	28.425	60.467	153.000	1.300	٥			,	()
	24,400	04.525	4.47.000	4 000			4.000	4.46.000	225
Catchment AA Basin	21.488	81.525	147.000	1.000		1	1.000	146.000) 225
Catchment D	28.622	47.802	154.500	1.000					
					٥				
			<u>Simulatio</u>	n Setting	<u>s</u>				
Rainfall Methodology Summer CV Winter CV	FEH-13 0.750 0.840	Drain	Analysis Skip Stead Down Time	y State	Normal x 240	Che	ck Disch	rage (m³∕l arge Rate arge Volu	e(s) x
			Storm D	urations	1			_	
15 30 60	I	180	240	I		I	I	960	1440
Ке	turn Perio (years)		e Change C %)	Addition (A S		Addition (Q %			
	10	0	40		10		0		
	<u>N</u>	ode Catchn	nent A Basi	n Online	Orifice C	<u>ontrol</u>			
Fla Replaces Downstre		x √		epth (m) Flow (l/s)	0.700 10.8	Discha	arge Coe	fficient	0.600
Invert Le		147.500	-	neter (m)					
	<u>Node</u>	Attenuatio	<u>n B Basin C</u>	Online Hy	dro-Brake	e [®] Control			
	•	x			bjective		imise up	ostream s	torage
Replaces Downstre Invert Le		√ 151.500		Product	wailable Number	√ CTL-SHE	-0086-29	00-0700-	-2900
Design De Design Fl	pth (m)	0.700 2.9		tlet Diam e Diamet		0.100 1200			
-		Attenuatio				e [®] Control			
-						(

х	Objective	(HE) Minimise upstream storage
\checkmark	Sump Available	\checkmark
151.700	Product Number	CTL-SHE-0128-7500-1000-7500
1.000	Min Outlet Diameter (m)	0.150
7.5	Min Node Diameter (mm)	1200
	x √ 151.700 1.000 7.5	√Sump Available151.700Product Number1.000Min Outlet Diameter (m)

_		30/08/2023		
No	de Catchment D Onl	ine Hydro-Brake [®] C	ontrol	
Replaces Downstream Link Invert Level (m) Design Depth (m)		Objective Sump Available Product Number utlet Diameter (m) de Diameter (mm)	(HE) Minimise u ✓ CTL-SHE-0092-3 0.150 1200	pstream storage 400-0700-3400
<u>Node</u> (Catchment AA Basin	Online Hydro-Brake	e [®] Control	
Replaces Downstream Link Invert Level (m) Design Depth (m)		Objective Sump Available Product Number utlet Diameter (m) de Diameter (mm)	(HE) Minimise u ✓ CTL-SHE-0155-1 0.225 1200	pstream storage 080-0700-1080
Node	Catchment A Basin D	Depth/Area Storage	<u>Structure</u>	
• • •	.00000 Safety Fa .00000 Por		Invert Lev ne to half empty (
Depth (m) 0.000	Area Inf Area (m²) (m²) 565.0 0.0	DepthArea(m)(m²)1.0001175.0	Inf Area (m²) 0.0	
Node A	Attenuation B Basin I	Depth/Area Storage	<u>Structure</u>	
	.00000 Safety Fa .00000 Por		Invert Lev ne to half empty (
Depth (m) 0.000	(m²) (m²)	DepthArea(m)(m²)1.000605.0	Inf Area (m²) 0.0	
Node /	Attenuation C Basin I	Depth/Area Storage	<u>Structure</u>	
	.00000 Safety Fa .00000 Por		Invert Lev ne to half empty (· · /
Depth (m) 0.000	Area Inf Area (m²) (m²) 605.0 0.0	DepthArea(m)(m²)1.3001250.0	Inf Area (m²) 0.0	
<u>Node C</u>	atchment AA Basin	Depth/Area Storage	<u>Structure</u>	
	.00000 Safety Fa .00000 Por		Invert Lev ne to half empty (
Depth (m) 0.000	Area Inf Area (m²) (m²) 770.0 0.0	DepthArea(m)(m²)1.0001380.0	Inf Area (m²) 0.0	
No	de Catchment D Dep	th/Area Storage Str	<u>ucture</u>	
	.00000 Safety Fa .00000 Por		Invert Lev ne to half empty (

CAUSEWAY 🛟	PJA Civil En	gineerin	g Limited	File: Flow Network: Michael 30/08/20	: Storm I Turner		Page 4
	Depth (m) 0.000	Area (m²) 490.0	Inf Area (m²) 0.0	Depth (m) 1.000	Area (m²) 790.0	Inf Area (m²) 0.0	

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	Catchment A Basin	344	148.147	0.647	71.7	493.1345	0.0000	SURCHARGED
360 minute winter	Attenuation B Basin	352	152.177	0.677	35.1	250.5194	0.0000	ОК
480 minute winter	Attenuation C Basin	472	152.589	0.889	78.4	734.2739	0.0000	ОК
720 minute winter	Catchment AA Basin	720	146.624	0.623	46.7	598.6490	0.0000	ОК
480 minute winter	Catchment D	472	154.083	0.583	35.6	336.5356	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Discharge Vol (m ³)
360 minute winter	Catchment A Basin	Orifice	Catchment AA Basin	8.9	
360 minute winter	Attenuation B Basin	Hydro-Brake®		2.9	89.3
480 minute winter	Attenuation C Basin	Hydro-Brake [®]		7.5	263.3
720 minute winter	Catchment AA Basin	Hydro-Brake®		10.8	468.8
480 minute winter	Catchment D	Hydro-Brake [®]		3.4	114.8

Appendix H Severn Trent Water Developer Enquiry

WONDERFUL ON TAP

SEVERN TRENT

16th December 2022

Michael Turner The Aquarium King Street Reading RG1 2AN

Dear Michael

Proposed Development: Land Off Birmingham Road

I refer to your 'Development Enquiry Request' of 350 houses, school and commercial sites in respect of the above named site. Please find enclosed the sewer records that are included in the fee together with the Supplementary Guidance Notes (SGN) which refer to surface water disposal from development sites.

Protective Strip

Due to a change in legislation on 1 October 2011, there may be former private sewers on the site which have transferred to the responsibility of Severn Trent Water Ltd, which are not shown on the statutory sewer records, but are located in your client's land. These sewers would also have protective strips that we will not allow to be built over. If such sewers are identified to be present on the site, please contact us for further guidance.

Foul Water Drainage

A foul connection into highway Birmingham Rd to the north into the 225mm cws,or 225mm fws in Wilderness Ln to the east @ 5.5l/s 2xdwf but due to surcharge levels and the expected additional flows into the network downstream then additional investigation/modelling will be required.

Due to the performance of the downstream network, modelling will be required to better understand the impact of the additional properties on the public network..

In a change to our previous process, we no longer charge developers for the hydraulic modelling service. We will liaise with you over time with regards to the outcome of our investigations and any impact that may have on the planning status, occupation, or phasing of the site. However, while we can provide a brief summary

Severn Trent Water Ltd Oxley Moor Road Wolverhampton WV9 5HN

www.stwater.co.uk

Email: <u>Network.Solutions@SevernTrent.co.uk</u>

Our ref: 1068416

of our findings if you need us to, we will no longer provide the full external capacity assessment report.

From the application you have submitted, I am assuming that the development has not been granted planning approval. In the meantime, the site will be added to our modelling tracker and reviewed regularly until the site can be progressed for sewer modelling. I would therefore be grateful if you would forward as soon as possible the following details:

- Confirmation whether a pumped solution is required (please provide pump rate and frequency, if available)
- Anticipated flow rate from the site
- Proposed planned start and completion date
- Any phasing details of the proposed development
- Confirm how many properties will discharge into each of the connections to the public sewer.
- Planned occupation date

Surface Water Drainage

Under the terms of Section H of the Building Regulations 2000, the disposal of surface water by means of soakaways should be considered as the primary method. If these are found to be unsuitable, satisfactory evidence will need to be submitted. The evidence should be either percolation test results or by the submission of a statement from the SI consultant (extract or a supplementary letter).

Subject to above Severn Trent Water expects all surface water from the development to be drained in a sustainable way to the nearest watercourse or land drainage channel, including highway drainage etc. subject to the developer discussing all aspects of the developments surface water drainage, with the Local Lead Flood Authority (LLFA). Any discharge rate to a watercourse or drainage ditch will be determined by the LLFA / EA.

New Connections

For any new connections (including the re-use of existing connections) to the public sewerage system, the developer will need to submit a Section 106 application form. Our Developer Services department are responsible for handling all new connections

enquiries and applications. To contact them for an application form and associated guidance notes please call 0800 707 6600 or download from <u>www.stwater.co.uk</u>.

Please quote the reference 1068416 in any future correspondence (including e-mails) with STW Limited. Please note that Developer Enquiry responses are only valid for 6 months from the date of this letter.

Yours sincerely,

Michael Taylor Network Solutions Developer Services

Appendix I Pre-Application Correspondence

Product 4 (Detailed Flood Risk Data) for Great Barr, Birmingham

Reference number: 320218 Date of issue: 11/08/2023

We are unable to provide you with a full product 4 response because:

- There is no detailed modelled information available for this site
- And we do not have any records of flooding in this area.

Flood Map for Planning (Rivers and Sea)

The Flood Map for planning (Rivers and Sea) indicates the area at risk of flooding, **assuming no flood defences exist**, for a flood event with a 0.5% chance of occurring in any year for flooding from the sea, or a 1% chance of occurring for fluvial (river) flooding (flood zone 3). It also shows the extent of the Extreme Flood Outlines (Flood zone 2) which represents the extent of a flood event with a 0.1% chance of occurring in any year, or the highest recorded historic extent if greater. The flood zones refer to the land at risk of flooding and **does not** refer to individual properties. It is possible for properties to be built at a level above the floodplain but still fall within the risk area.

The Flood Map only indicates the extent and likelihood of flooding from rivers or the sea. It should also be remembered that flooding may occur from other sources such as surface water sewers, road drainage, etc. This map can be accessed via our website: <u>https://flood-map-for-planning.service.gov.uk/</u>

Recorded Flooding

With regards to the history of flooding I can advise that we do not have any records of flooding in this area. It is possible that other flooding may have occurred that we do not have records for, and other organisations, such as the Lead Local Flood Authority or Internal Drainage Boards (where relevant), may have records.

This information is provided subject to the <u>Open Government Licence</u>, which you should read for details of permitted use.

Risk of Surface Water Flooding Map

Managing the risk of flooding from surface water is the responsibility of Lead Local Flood Authorities. The 'risk of flooding from surface water' map has been produced by the Environment Agency on behalf of government, using information and input from Lead Local Flood Authorities.

You may wish to contact your Local Authority who may be able to provide information on surface water.

It is not possible to say for certain what the flood risk is but we use the best information available to provide an indication so that people can make informed choices about living with or managing the risks. The information we supply does not provide an indicator of flood risk at an individual site level. Further information can be found on the Environment Agency's website, https://flood-warning-information.service.gov.uk/long-term-flood-risk

Product 4 (Detailed Flood Risk Data) for Great Barr, Birmingham

Reference number: 320218 Date of issue: 11/08/2023

We are unable to provide you with a full product 4 response because:

- There is no detailed modelled information available for this site
- And we do not have any records of flooding in this area.

Flood Map for Planning (Rivers and Sea)

The Flood Map for planning (Rivers and Sea) indicates the area at risk of flooding, **assuming no flood defences exist**, for a flood event with a 0.5% chance of occurring in any year for flooding from the sea, or a 1% chance of occurring for fluvial (river) flooding (flood zone 3). It also shows the extent of the Extreme Flood Outlines (Flood zone 2) which represents the extent of a flood event with a 0.1% chance of occurring in any year, or the highest recorded historic extent if greater. The flood zones refer to the land at risk of flooding and **does not** refer to individual properties. It is possible for properties to be built at a level above the floodplain but still fall within the risk area.

The Flood Map only indicates the extent and likelihood of flooding from rivers or the sea. It should also be remembered that flooding may occur from other sources such as surface water sewers, road drainage, etc. This map can be accessed via our website: <u>https://flood-map-for-planning.service.gov.uk/</u>

Recorded Flooding

With regards to the history of flooding I can advise that we do not have any records of flooding in this area. It is possible that other flooding may have occurred that we do not have records for, and other organisations, such as the Lead Local Flood Authority or Internal Drainage Boards (where relevant), may have records.

This information is provided subject to the <u>Open Government Licence</u>, which you should read for details of permitted use.

Risk of Surface Water Flooding Map

Managing the risk of flooding from surface water is the responsibility of Lead Local Flood Authorities. The 'risk of flooding from surface water' map has been produced by the Environment Agency on behalf of government, using information and input from Lead Local Flood Authorities.

You may wish to contact your Local Authority who may be able to provide information on surface water.

It is not possible to say for certain what the flood risk is but we use the best information available to provide an indication so that people can make informed choices about living with or managing the risks. The information we supply does not provide an indicator of flood risk at an individual site level. Further information can be found on the Environment Agency's website, https://flood-warning-information.service.gov.uk/long-term-flood-risk

Highway Development & Lead Local Flood Authority

Guidance Note LLFA01

Flood Risk Assessment and Statements and Sustainable Urban Drainage Systems

The House of Commons written statement dated 18th December 2014 by the then Secretary of State for Communities and Local Government (DCLG) set out the Government's expectation that sustainable drainage systems would be provided in new developments wherever appropriate and the requirement for local Planning Authorities to consult the relevant Lead Local Flood Authority on Flood Risk Assessments for all proposed major development from 6th April 2015 in accordance with the National Planning Policy Framework (DCLG March 2012)

The DCLG definition of major development is;

'For dwellings, a major development is one where the number of residential units to be constructed is 10 or more. Where the number of residential units to be constructed is not given in the application, a site area of 0.5 hectares (5000m2) or more should be used as the definition of a major development. For all other uses, a major development is one where the floor space to be built is 1,000 square metres or more, or where the site area is 1 hectare or more.

Where a site above 1 hectare is subject to a change of use application it should be coded under major development and not as a change of use '

Technical Guidance To The National Planning Policy Framework (DCLG March 2102), Paragraph 9 refers to site specific flood risk assessments now applicable for all proposed major developments;

'This should identify and assess the risks of all forms of flooding to and from the development and demonstrate how these flood risks will be managed so that the development remains safe throughout its lifetime, taking climate change into account'.

Flood risk to the development includes but is not limited to Main river and surface water flooding (informed by EA national flood maps on GOV.UK website) with 'areas at risk of flooding' from main river determining the potential need for sequential or exception testing.

Other flood risk can come from rising ground water, overwhelmed drainage systems and other surface water bodies ie reservoirs/ponds/canals.

Sandwell's Surface Water Management Plan (2014) provides additional detailed analysis of localised areas subject to surface water flooding that should also be assessed for proposed new developments.

Flood risk from the development must be assessed and designed principally in accordance with the Non Statutory Technical Standards For Sustainable Drainage (DEFRA March 2015), this is set out and further enhanced within the LASOO (Local Authority SuDS Officer Organisation) Best Practice Guidance document which also provides additional guidance for developers and the level of information required to support respective Planning applications.

Local Planning Policy is also applicable and in part supersedes elements of the above, the Black Country Core Planning Strategy 2012 ENV 5 states;

Policy (References to PPS25 should now be made to NPPF)

The Black Country Authorities will seek to minimize the probability and consequences of flood risk by adopting a strong risk-based approach in line with PPS25. Development will be steered to areas with a low probability of flooding first through the application of the sequential test. The Exception test will then be required for certain vulnerable uses in medium and high probability flood areas. Proposals for development must demonstrate that the level of flood risk associated with the site is acceptable in terms of the Black Country Strategic Flood Risk Assessment and its planning and development management recommendations as well as PPS25 depending on which flood zone the site falls into and the type of development that is proposed (see PPS25, table D1: Flood Zones to explain appropriate uses in flood zones).

To assist in both reducing the extent and impact of flooding and also reducing potential urban heat island effects, all developments should:

a) Incorporate Sustainable Drainage Systems (SUDs), unless it would be impractical to do so, in order to significantly reduce surface water run-off and improve water quality. The type of SUDs used will be dependent on ground conditions;

b) Open up culverted watercourses where feasible and ensure development does not occur over existing culverts where there are deliverable strategies in place to implement this;

c) Take every opportunity, where appropriate development lies adjacent to the river corridors, or their tributaries or the functional floodplain, to benefit the river by reinstating a natural, sinuous river channel and restoring the functional floodplain within the valley where it has been lost previously;

d) On sites requiring a Flood Risk Assessment, reduce surface water flows back to equivalent greenfield rates;

e) Create new green space, increase tree cover and/or provide green roofs;

No development will be permitted within a groundwater Source Protection Zone 1 which would physically disturb an aquifer, and no permission will be granted without a risk assessment demonstrating there would be no adverse effect on water resources.

CIRIA c753 The SuDS Manual (2015) provides full guidance and information on the design philosophy of SuDS systems and core design principles of sustainable drainage elements recommended to prevent flood risk from the proposed development.

The table below indicates the typical level of information that is required to be submitted for each type of application or stage within the planning process.

Pre-app	Outline	Full	Reserved	Discharge	Documents submi. ed
~	✓	\checkmark			Flood Risk Assessment/Statement
~	✓	\checkmark			Drainage Strategy/Statement & sketch layout plan
	✓				Preliminary layout drawings
	✓				Preliminary 'outline' hydraulic calculations
	~				Preliminary landscape proposals
	✓				Ground investigation report (for infiltration if considered)
	~	\checkmark			Evidence of 3 rd party agreement for discharge to their system
		\checkmark		✓	Maintenance program and on-going maintenance
		\checkmark	✓		Detailed development layout
		\checkmark	✓	\checkmark	Detailed flood & drainage design drawings
		\checkmark	✓	✓	Full structural designs, hydraulic calculations & ground
		\checkmark	✓	✓	Geotechnical, factual and interpretive reports, including
		\checkmark	✓	✓	Detailed landscaping details
		~	✓	✓	Discharge agreements (temporary and permanent)
		\checkmark	\checkmark	\checkmark	Development Management & Construction Phasing Plan
		\checkmark	\checkmark	✓	Exceedance Routing Plan

A proposed minor development application may require a Flood Risk Assessment if it would:

- Have an adverse effect on a watercourse, floodplain or its flood defences;
- Would impede access to flood defence and management facilities; or
- Where the cumulative impact of such developments would have a significant effect on local flood storage capacity or flood flows

Developers should refer to the following core guidance documents;

• National Planning Policy Framework – Mar 2012

Department For Communities and Local Government (DCLG)

10. Meeting the challenge of climate change, flooding and coastal change (Paragraphs 99-104)

• Technical Guidance to the National Planning Policy Framework – Mar 2012

Department For Communities and Local Government (DCLG) Flood Risk (Paragraphs 2-19)

This sets out the principles of Sequential and Exception Testing for development proposed within specific areas at risk of flooding and to determine whether it is appropriate. This should be assessed by utilising the Environment Agency Flood Maps and Local Authority Strategic Flood Risk Assessments;

GOV.UK website - Long term flood risk assessment for locations in England

https://flood-warning-information.service.gov.uk/long-term-flood-risk

Surface Water Management Plan – Mar 2014

Sandwell MBC / WSP

Non-Statutory Technical Standards For Sustainable Drainage: Best Practice Guidance

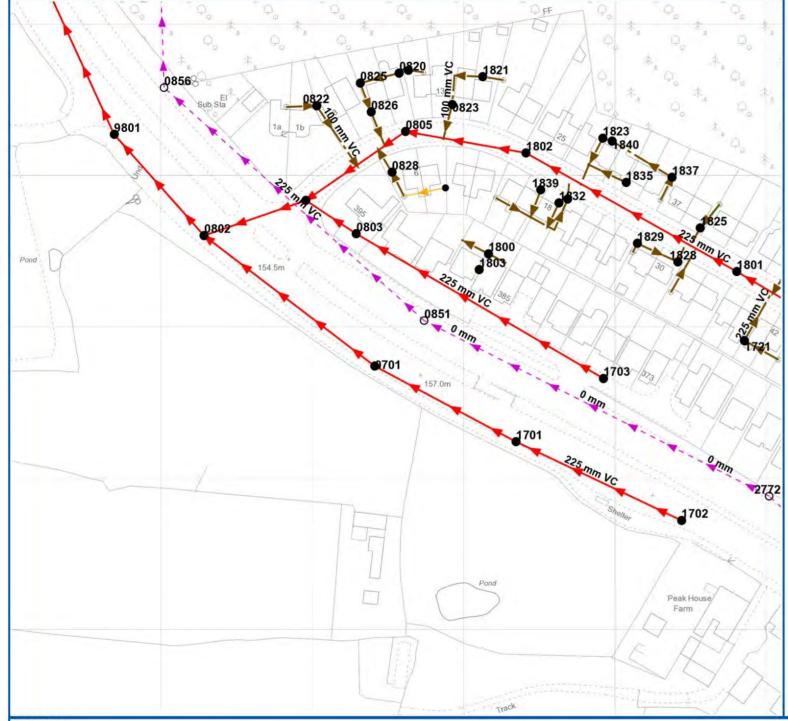
Local Authority SuDS Officer Organisation (LASOO)

This document supports and enhances the subsequent DEFRA technical standards and provides guidance principles and explanations for designers on the design, construction, operation and maintenance of sustainable drainage systems.

Black Country Core Planning Strategy 2012 – Feb 2011

(ENV 5 Flood Risk, Sustainable Drainage Systems and Urban Heat Island)

This document provides local Black Country Authority planning policy with regard to FRAs and SuDs. It is important to note that Local Policy in relation to proposed discharge rates supersedes National Policy.


GOV.UK website - Flood Risk Assessments: Climate change allowances – Feb 2016

https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances

This supersedes the climate change figures issued within the Tech Guidance To NPPF 2012.

CIRIA C753 The SuDS Manual - 2015

This provides industry good practice guidance covering the planning, design, construction and maintenance of SuDS systems.

Reference	Cover Level	Invert Level Upstream	Invert Level Downstream	Purpose	Material	Pipe Shape	Max Size	Min Size	Gradient	Year Laid
SP04950856	151.13	<unk></unk>	<unk></unk>	S	VC	С	225	<unk></unk>	0	02/11/2007 00:00:00
SP04951829	159.07	158.4	157.76	F	VC	С	100	<unk></unk>	23	31/12/1899 00:00:00
SP04951839	158.3099	158.07	157.8	F	VC	С	100	<unk></unk>	35.63	31/12/1899 00:00:00
SP04950701	156.47	153.98	150.94	С	VC	С	225	<unk></unk>	23.35	31/12/1899 00:00:00
SP04951703	159.1999	157.54	155.66	С	VC	С	225	<unk></unk>	50.35	31/12/1899 00:00:00
SP04951721	159.5099	157.47	<unk></unk>	F	VC	С	225	<unk></unk>	0	31/12/1899 00:00:00
SP04950851	156.52	155.34	<unk></unk>	S	VC	С	225	<unk></unk>	0.74	02/11/2007 00:00:00
SP04951821	157.19	156.67	155.77	F	VC	С	100	<unk></unk>	21.04	31/12/1899 00:00:00
SP04950823	156.75	155.77	<unk></unk>	F	VC	С	150	<unk></unk>	0	31/12/1899 00:00:00
SP04951828	159.16	157.76	<unk></unk>	F	VC	С	150	<unk></unk>	0	31/12/1899 00:00:00
SP04950826	155.9799	155.33	<unk></unk>	F	VC	С	100	<unk></unk>	0	31/12/1899 00:00:00
SP04950828	156.85	<unk></unk>	<unk></unk>	F	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00
SP04951803	<unk></unk>	<unk></unk>	<unk></unk>	F	VC	U	100	<unk></unk>	<unk></unk>	31/12/1899 00:00:00
SP04950822	154.94	153.55	<unk></unk>	F	VC	С	100	<unk></unk>	0	31/12/1899 00:00:00
SP04951837	158.6	158.04	<unk></unk>	F	VC	С	100	<unk></unk>	0	31/12/1899 00:00:00
SP04951801	159.3999	156.86	155.88	С	VC	С	225	<unk></unk>	81.6	31/12/1899 00:00:00
SP04950829	<unk></unk>	<unk></unk>	<unk></unk>	F	VC	С	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00
SP04951702	160.1049	156.925	156.233	С	VC	С	<unk></unk>	<unk></unk>	87.77	31/12/1899 00:00:00
SP04951825	159.1399	157.66	<unk></unk>	F	VC	С	150	<unk></unk>	0	31/12/1899 00:00:00
SP04950803	157.11	152.8	152.12	С	VC	С	225	<unk></unk>	29.28	31/12/1899 00:00:00
SP04950820	<unk></unk>	<unk></unk>	155.35	F	VC	С	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00
SP03959801	150.75	148.31	<unk></unk>	С	VC	С	<unk></unk>	<unk></unk>	0.34	31/12/1899 00:00:00
SP04951800	<unk></unk>	<unk></unk>	<unk></unk>	F	VC	U	100	<unk></unk>	<unk></unk>	31/12/1899 00:00:00
SP04951840	<unk></unk>	<unk></unk>	<unk></unk>	F	VC	С	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00
SP04951802	157.71	155.85	154.48	С	VC	С	225	<unk></unk>	29.51	31/12/1899 00:00:00
SP04952772	160.6809	0	0	S	<unk></unk>	<unk></unk>	0	0	0	31/12/1899 00:00:00
SP04951701	158.3899	156.07	153.99	С	VC	С	225	<unk></unk>	25.47	31/12/1899 00:00:00
SP04951834	158.46	157.23	<unk></unk>	F	VC	С	150	<unk></unk>	0	31/12/1899 00:00:00
SP04950825	155.9799	155.35	155.33	F	VC	С	100	<unk></unk>	512.5	31/12/1899

LEGEND

Opera	tional Site		Combined Bifurcation Manhole	_	Combined Unsurveyed Pipe	-	Combined Vacuum Sewer
Waste	Water Pump	0	Surface Water Bifurcation Manhole	-	Foul Unsurveyed Pipe		S104 Surface Water Vacuum Sew
4	Transferred Asset		Dual Manhole	-	Transferred Surface Water Sewer	-	S104 Combined Vacuum Sewer
4	524		Foul Single Manhole	-	Transferred Combined Sewer		S104 Foul Vacuum Sewer
4	\$104		Combined Single Manhole	-	Transferred Foul Sewer		Private Surface Water Vaccum Se
<	5102	0	Surface Water Single Manhole	-	Disposal Pipe	_	Private Combined Vacuum Sewe
4	Null Private	0	Twin Manhole		Overflow Pipe	-	Private Foul Vacuum Sewer
-	Null		Foul Adopted Manhole	=	Culverted Water Course	-	Surface Water Siphon
	None		Combined Adopted Manhole	-	Waste Internal Site Pipe	-	Combined Siphon
<	Highway Drain	0	Surface Adopted Manhole	_	Sewer Service Connection		Foul Siphon
◀	Adopted Sever		Transferred Manhole	_	Gravity Server Others		Private Surface Water Siphon
Storag	je.		Unsurveyed Manhole	Pressu	re Sewer Pipe	-	Private Combined Siphon
DS	Disposal Ste	Gravit	y Sewer Pipe	-	Surface Water Pressure Sewer		Private Foul Siphon
	Off-Line Waste Water Storage	-	Foul Gravity Sewer	-	Combined Pressure Sewer		S104 Surface Water Siphon
	On-Line Waste Water Storage	-	Combined Gravity Sewer	-	Foul Pressure Sewer	-	\$104 Combined Siphon
θ	Wet Well	-	Surface Water Gravity Sewer		\$104 Surface Water Pressure Sewer	Sec	S104 Foul Siphon
Waste	Water Process Structure		S104 Surface Water Gravity Sewer	-	S104 Combined Pressure Sewer		Surface Water Unsurveyed Pipe
STP	Sewage Teatment Point	-	S104 Combined Gravity Sewer	-	S104 Foul Pressure Server	-	Combined Unsurveyed Pipe
575	Sewage Treatment Structure	-	S104 Foul Gravity Server		Private Surface Water Pressure Sewer	-	Foul Unsurveyed Pipe
SLTP	Sludge Treatment Point		Private Surface Water Gravity Sewer	-	Private Combined Pressure Sewer	-	Disposal Pipe
SLTS	Sludge Treatment Structure	-	Private Combined Gravity Sewer	_	Private Foul Pressure Server	Servic	e Pipe
Manh	ole		Private Foul Gravity Sewer	-	Suiface Water Vacuum Sewer	-	Surface Water Lateral Drain
	Foul Bifurcation Manhole		Surface Water Unsurveyed Pipe		Foul Vacuum Sewer	_	Combined Lateral Drain

_	Foul Lateral Drain	ъ.	Blind Shaft		
_	S104 Surface Water Lateral Drain	M	Facility Connector		
_	5104 Combined Lateral Drain		Head Node		
_	S104 Foul Lateral Drain		Lamphole		
-	Private Surface Water Lateral Drain		Sewerage Air Valve		
_	Private Combined Lateral Drain	-	Sewerage Chemical Inject		
_	Private Foul Lateral Drain		Sewerage Hatch Box		
-	Transferred Surface Water Lateral Dra		Sewerage Pressure Wash		
	Transferred Combined Lateral Drain	1	Vent Column		
-	Transferred Foul Lateral Drain	~	Waste Water Outfall		
Ancilla	ity	Control Valve			
0	Balancing Lagoon	_	Hydrobrake		
ŏ	Сназе Тгар	-	Penstock		
0	Interceptor	_	Sewerage Isolation Valve		
H	Screen	Т	Sewerage Non Return Va		
Chaml	ber	Landli	neSymbol		
0	Flushing Chamber		Culvert Symbol		
0	Scalaway	A	Direction Of Flow Symbo		
Ē	Overflow	0	Boundary Half Mereing S		
Conne	ctor		Bench Mark Symbol		
	Sewer Junctions	12	Railway Switch Symbol		
	SewerLine Connection Node	+-	Road Related Flow Symb		
Fitting		Print5	OmLine		
-					

tion Poin

MATE	RIALS	CA	TEGORIES	
	- NONE	w	- WEIR	
AC	- ASBESTOS CEME	С	- CASCADE	
BR	- BRICK	DB	- DAMBOARD	
CC	- CONCRETE BOX CULVERT	SE	- SIDE ENTRY	
CI	- CAST IRON	FV	- FLAP VALVE	
со	- CONCRETE	BD	- BACK DROP	
CSB	CONCRETE SEGMENTS (BOLTED)	S	- SIPHON	
CSU	- CONCRETE SEGMENTS (UNBOLTED)	D	- HIGHWAY DRAIN	
DI	- DUCTILE IRON	S10	04 - SECTION 104	
GRP	- GLASS REINFORCED PLASTIC			
MAC	- MASONRY IN REGULAR COURSES	SHA	PE	0
MAR	- MASONRY RANDOMLY COURSED	С	- CIRCULAR	
PE	- POLYETHLENE	E	- EGG SHAPED	D
PF	- PITCH	0	- OTHER	D
PP	- POLYPROPYLENE	R	- RECTANGLE	1
PSC	- PLASTIC STEEL COMPOSITE	S	- SQUARE	
PVC	- POLYVINYL CHLORIDE	т	- TRAPEZOIDAL	2
RPM	- REINFORCED PLASTIC MATRIX	U	- UNKNOWN	
SI	- SPUN (GREY) IRON			
ST	- STEEL	PU	RPOSE	1.5
U	- UNKNOWN	с	- COMBINED	3
vc	- VITRIFIED CLAY	Ε	- FINAL EFFLUENT	
XXX	- OTHER	F	- FOUL	
		L	- SLUDGE	1.6
		S	- SURFACE WATER	4
				4
				5
				6
				0

Severn Trent Water Limited Asset Data Management PO Box 5344 Coventry CV3 9FT Telephone: 0345 601 6616

SEWER RECORD (Tabular)

O/S Map Scale: 1:1,250

This map is centred upon: **X:** 404077.53 **Y:** 295789.65

Date of Issue: 30-08-23 Disclaimer Statement

Do not scale off this Map.

This plan and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this plan and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of SEVERN TRENT WATER assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.

3 On 1 October 2011 most private severs and private lateral drains in Severn Trent Water's severage area, which were connected to a public sever as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public severs and public lateral drains. A further transfer takes place on 1 October 2012. Private pumping stations, which form part of these severs or lateral drains, will transfer to ownership of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not possess complete records of these assets. These assets may not be displayed on the map.

Reproduction by permission of Ordnance Survey on behalf of HMSO. Crown Copyright and database right 2004. All rights reserved.

Ordnance Survey licence number: 100031673

Document users other than SEVERN TRENT WATER business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

Michael Turner

From:	Network Solutions <network.solutions@severntrent.co.uk></network.solutions@severntrent.co.uk>
Sent:	30 August 2023 10:06
To:	Michael Turner
Subject:	RE: [PJA: 06832] Asset Information 1068416
Attachments:	A34.pdf; Wildeness Ln.pdf

ST Classification: OFFICIAL PERSONAL

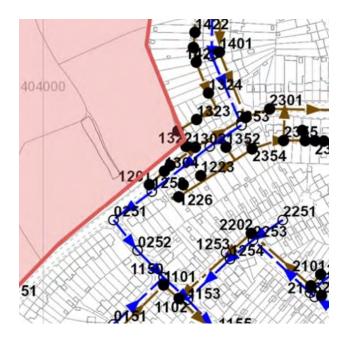
Good Morning

Please find the two plans with information as requested. The information for M/H 0802 seems to be missing from the plan, our records indicate Cover Level 153.63 and Invert Level 150.91 on the 225mm combined sewer.

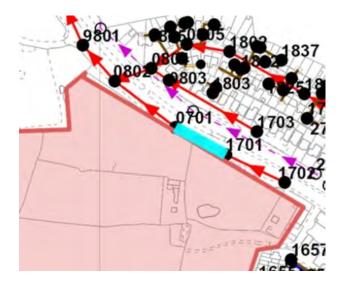
Please note the section highlighted in cyan on the original plan, was just an indication of a reference point, off our records and is not significant to the sewers on site.

Kind Regards

Michael Taylor Network Solutions Developer Services Email. Network.Solutions@severntrent.co.uk


From: Michael Turner <<u>michael.turner@pja.co.uk</u>>
Sent: 15 August 2023 16:58
To: Asset.Protection <<u>Asset.Protection@severntrent.co.uk</u>>
Cc: Andrea Nelmes <<u>andrea.nelmes@pja.co.uk</u>>; Phoebe Ryding <<u>Phoebe.ryding@pja.co.uk</u>>
Subject: [PJA: 06832] Asset Information

Caution: This is an external email originating outside Severn Trent. Think before you click on links or open attachments.


Dear Sir/Madam

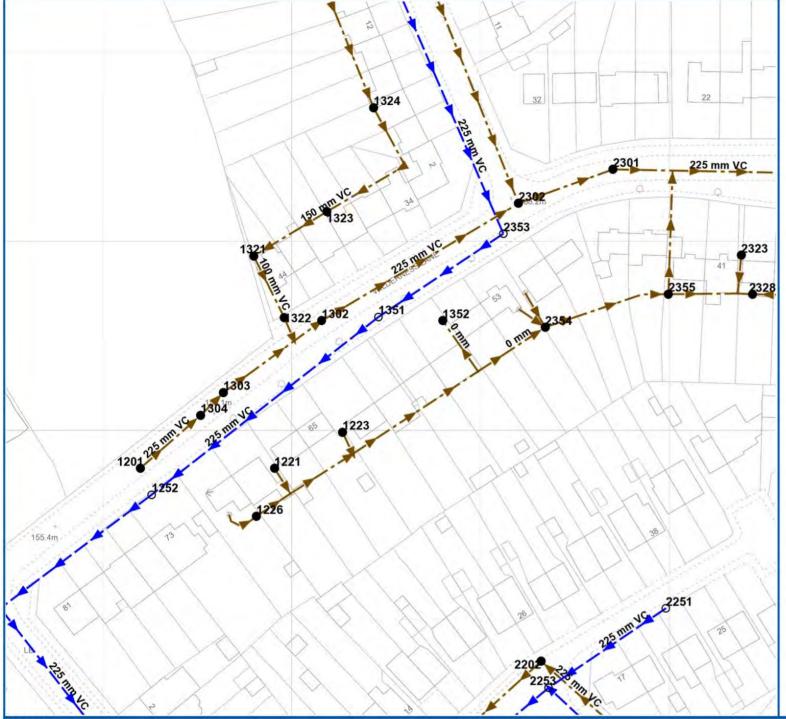
We have been provided with STWL sewer asset information/mapping previously as part of a developer enquiry response (Ref. 1068416 L/O). We are reviewing potential foul connection points along Birmingham Road and Wilderness Lane, however the current mapping is set at a scale that makes it difficult to differentiate MH's and associated references. Could you therefore please provide a zoomed in version with complete sewer record information (cover and invert levels) for the system along Wilderness Lane, Walsall for both Foul and Surface Water. An excerpt of the area of interest is included below.

The Site details are Great Barr, Birmingham. OS Co-ordinates: 403852 , 295492

Furthermore, on Birmingham Road (A34) would you be able to provide the Cover and Invert Level of the Manholes labelled, 1702, 1701, 0701, 0802, and 9801 in addition to clarifying why one section of sewer is highlighted cyan? These manholes are shown below:

I look forward to hearing from you.

Kind regards,


Michael

Michael Turner Graduate Engineer Reading T. 0118 338 4861 The Aquarium, King Street, Reading, RG1 2AN, UK www.pja.co.uk

Severn Trent Plc (registered number 2366619) and Severn Trent Water Limited (registered number 2366686) (together the "Companies") are both limited companies registered in England & Wales with their registered office at Severn Trent Centre, 2 St John's Street, Coventry, CV1 2LZ This email (which includes any files attached to it) is not contractually binding on its own, is intended solely for the named recipient and may contain CONFIDENTIAL, legally privileged or trade secret information protected by law. If you have received this message in error please delete it and notify us immediately by telephoning +44 2477715000. If you are not the intended recipient you must not use, disclose, distribute, reproduce, retransmit, retain or rely on any information contained in this email. Please note the Companies reserve the right to monitor email communicationsin accordance with applicable law and regulations. To the extent permitted by law, neither the Companies or any of their subsidiaries, nor any employee, director or officer thereof, accepts any liability whatsoever in relation to this email including liability arising from any external breach of security or confidentiality or for virus infection or for statements made by the sender as these are not necessarily made on behalf of the Companies. Reduce waste! Please consider the environment before printing this email

Reference	Cover Level	Invert Level Upstream	Invert Level Downstream	Purpose	Material	Pipe Shape	Max Size	Min Size	Gradient	Year Laid	
SP04952301	158.856	153.345	0	F	VC	С	225	0	0.1	31/12/1899 00:00:00	
SP04952355	<unk></unk>	<unk></unk>	<unk></unk>	F	U	U	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00	
SP04952355	<unk></unk>	<unk></unk>	<unk></unk>	F	U	U	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00	
SP04951322	156.91	156.05	<unk></unk>	F	VC	С	150	<unk></unk>	0	31/12/1899 00:00:00	
SP04951223	156.8399	156.12	<unk></unk>	F	VC	С	100	<unk></unk>	0	31/12/1899 00:00:00	
SP04951252	155.554	154.734	153.426	S	VC	С	225	<unk></unk>	38.17	31/12/1899 00:00:00	
SP04951303	156.2599	153.859	153.729	F	VC	С	225	<unk></unk>	247.69	31/12/1899 00:00:00	
SP04951321	157.66	157.08	156.05	F	VC	С	100	<unk></unk>	17.67	31/12/1899 00:00:00	
SP04951351	157.621	156.042	154.734	S	VC	С	225	<unk></unk>	58.18	31/12/1899 00:00:00	
SP04952328	<unk></unk>	<unk></unk>	159.61	F	VC	С	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00	
SP04951302	157.0859	153.729	153.402	F	VC	С	225	<unk></unk>	183.45	31/12/1899 00:00:00	
SP04952202	155.317	152.93	150.013	F	VC	С	225	<unk></unk>	34.67	31/12/1899 00:00:00	
SP04952253	155.2769	153.22	152.629	S	VC	С	225	<unk></unk>	52.95	31/12/1899 00:00:00	
SP04951226	<unk></unk>	<unk></unk>	<unk></unk>	F	VC	С	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00	
SP04951304	156.134	153.984	153.859	F	VC	С	225	<unk></unk>	65.31	31/12/1899 00:00:00	
SP04952251	157.054	155.539	153.22	S	VC	С	225	<unk></unk>	16.14	31/12/1899 00:00:00	
SP04951323	157.88	157.12	157.08	F	VC	С	150	<unk></unk>	564.25	31/12/1899 00:00:00	
SP04952323	160.3899	<unk></unk>	159.61	F	VC	С	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00	
SP04951201	155.5639	154.134	153.984	F	VC	С	225	<unk></unk>	141.73	31/12/1899 00:00:00	
SP04952302	158.1519	153.402	153.345	F	VC	С	225	<unk></unk>	442.83	31/12/1899 00:00:00	
SP04952353	158.014	156.712	156.042	S	VC	С	225	<unk></unk>	59.19	31/12/1899 00:00:00	
SP04952354	<unk></unk>	<unk></unk>	<unk></unk>	F	U	U	<unk></unk>	<unk></unk>	0	31/12/1899 00:00:00	
SP04951324	158.36	157.49	157.12	F	VC	С	150	<unk></unk>	111.97	31/12/1899 00:00:00	
SP04951221	156.38	155.57	<unk></unk>	F	VC	С	100	<unk></unk>	0	31/12/1899 00:00:00	

LEGEND

GEI									
Operat	tional Site		Combined Effurcation Manhole	-	Combined Unsurveyed Pipe	-	Combined Vacuum Sewer	_	Foul Lateral Drain
Waste	Water Pump	0	Surface Water Bifurcation Manhole	-	Foul Unsurveyed Pipe		S104 Surface Water Vacuum Sewer	-	S104 Surface Water
•	Transferred Asset		Dual Manhole	-	Transferred Surface Water Sewer	-	S104 Combined Vacuum Sewer	-	5104 Combined Lat
•	524		Foul Single Manhole	_	Transferred Combined Sever		S104 Foul Vacuum Sewer	-	S104 Foul Lateral D
<	\$104		Combined Single Manhole	-	Transferred Foul Sewer		Private Surface Water Vaccum Sewer	-	Private Surface Wat
-	5102	0	Surface Water Single Manhole	_	Disporal Pipe	_	Private Combined Vacuum Sewer	-	Private Combined L
4	Null Private	0	Twin Manhole		Overflow Pipe	-	Private Foul Vacuum Sewer	_	Private Foul Lateral
-	Null		Foul Adopted Manhole	=	Culverted Water Course	-	Surface Water Siphon	-	Transferred Surface
-	None		Combined Adopted Manhole	-	Waste Internal Site Pipe	-	Combined Siphon	-	Transferred Combin
<	Highway Drain	0	Surface Adopted Manhole	_	Sewer Service Connection		Foul Siphon	-	Transferred Foul Lat
-	Adopted Sewer	•	Transferred Manhole	_	Gravity Sewer Others		Private Surface Water Siphon	Ancilla	ary
Storag	e		Unsurveyed Manhole	Pressu	re Sewer Pipe	-	Private Combined Siphon	0	Balancing Lagoon
DS	Disposal Site	Gravit	y Sewer Pipe	-	Surface Water Pressure Sewer		Private Foul Siphon	0	Grease Тгар
	Off-Line Waste Water Storage	-	Foul Gravity Sewer	-	Combined Pressure Sewer		S104 Surface Water Siphon	0	Interceptor
	On-Line Waste Water Storage	-	Combined Gravity Sewer	-	Foul Pressure Sewer	-	\$104 Combined Siphon	Ħ	Screen
θ	Wet Well	-	Surface Water Gravity Sewer		S104 Surface Water Pressure Sewer	Section	S104 Foul Siphon	Cham	ber
Waste	Water Process Structure		S104 Surface Water Gravity Server	-	S104 Combined Pressure Sewer		Surface Water Unsurveyed Pipe	0	Flushing Chamber
STP	Sewage Treatment Point	-	S104 Combined Gravity Sewer	-	S104 Foul Pressure Sewer	-	Combined Unsurveyed Pipe	Ø	Scelaway
171	Sewage Treatment Structure	-	S104 Foul Gravity Server		Private Surface Water Pressure Sewer	-	Foul Unsurveyed Pipe	\square	Overflow
SLTP	Sludge Treatment Point		Private Surface Water Gravity Sewer	-	Private Combined Pressure Sewer	-	Disposal Pipe	Conne	ector
SLTS	Sludge Treatment Structure	-	Private Combined Gravity Sewer	-	Private Foul Pressure Sewer	Servic	e Pipe	•	Sewer Junctions
Manho	ble		Private Foul Gravity Sewer	-	Surface Water Vacuum Sewer	-	Surface Water Lateral Drain		SewerLine Connecti
	Foul Bifurcation Manhole	-	Surface Water Unsurveyed Pipe		Foul Vacuum Sewer	_	Combined Lateral Drain	Fitting	1

al Drain		Blind Shaft
ce Water Lateral Drain		Facility Connector
bined Lateral Drain	10	Head Node
Lateral Drain		Lamphole
face Water Lateral Drain	٠	Sewerage Air Valve
mbined Lateral Drain		Sewerage Chemical Injection Point
ul Lateral Drain		Sewerage Hatch Box
d Surface Water Lateral Dra	•	Sewerage Pressure Washout
Combined Lateral Drain	-	Vent Column
f Foul Lateral Drain	-	Waste Water Outfall
	Contro	I Valve
Lagoon	-	Hydrobrake
p	-	Penstock
	_	Severage Isolation Valve
	T	Sewerage Non Return Valve
	Landlin	neSymbol
hamber		Culvert Symbol
	1	Direction Of Flow Symbol
	-0	Boundary Half Mereing Symbol
	6	Bench Mark Symbol
ctions		Railway Switch Symbol
Connection Node	+	Road Related Flow Symbol
	Print50	ImLine

MATE	RIALS	CATEGORIES	
-	- NONE	W - WEIR	
AC	- ASBESTOS CEME	C - CASCADE	
BR	- BRICK	DB - DAMBOARD	
CC	- CONCRETE BOX CULVERT	SE - SIDE ENTRY	
CI	- CAST IRON	FV - FLAP VALVE	
co	- CONCRETE	BD - BACK DROP	
CSB	CONCRETE SEGMENTS (BOLTED)	S - SIPHON	
CSU	- CONCRETE SEGMENTS (UNBOLTED)	D - HIGHWAY DRAIN	
DI	- DUCTILE IRON	S104 - SECTION 104	
GRP	- GLASS REINFORCED PLASTIC		
MAC	- MASONRY IN REGULAR COURSES	SHAPE	0
MAR	- MASONRY RANDOMLY COURSED	C - CIRCULAR	
PE	- POLYETHLENE	E - EGG SHAPED	1
PF	- PITCH	0 - OTHER	0
PP	- POLYPROPYLENE	R - RECTANGLE	1
PSC	- PLASTIC STEEL COMPOSITE	S - SQUARE	
PVC	- POLYVINYL CHLORIDE	T - TRAPEZOIDAL	2
RPM	- REINFORCED PLASTIC MATRIX	U - UNKNOWN	
SI	- SPUN (GREY) IRON		
ST	- STEEL	PURPOSE	
U	- UNKNOWN	C - COMBINED	3
VC	- VITRIFIED CLAY	E - FINAL EFFLUENT	
XXX	- OTHER	F - FOUL	
		L - SLUDGE	
		S - SURFACE WATER	4
			5

Date of Issue: 30-08-23

reserved.

Severn Trent Water Limited Asset Data Management PO Box 5344 Coventry CV3 9FT Telephone: 0345 601 6616

SEWER RECORD (Tabular)

O/S Map Scale: 1:1,000

This map is centred upon:

X: 404176.21 **Y:** 295319.14

Disclaimer Statement

Do not scale off this Map.

This plan and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this plan and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of SEVERN TRENT WATER assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.

3 On 1 October 2011 most private sewers and private lateral drains in Severn Trent Water's sewerage area, which were connected to a public sewer as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public sewers and public lateral drains. A further transfer takes place on 1 October 2012. Private pumping stations, which form part of these sewers or lateral drains, will transfer to ownership of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not possess complete records of these assets. These assets may not be displayed on the map.

Reproduction by permission of Ordnance Survey on behalf of HMSO. Crown Copyright and database right 2004. All rights

Ordnance Survey licence number: 100031673

Document users other than SEVERN TRENT WATER business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

Michael Turner

From:	Asset.Protection <asset.protection@severntrent.co.uk></asset.protection@severntrent.co.uk>
Sent:	15 August 2023 12:28
To:	Michael Turner
Subject:	RE: [PJA: 06832] Historic Sewer Flood Risk - J-230728-22276
Categories:	Scanned by Gekko

ST Classification: OFFICIAL PERSONAL

Hi Michael

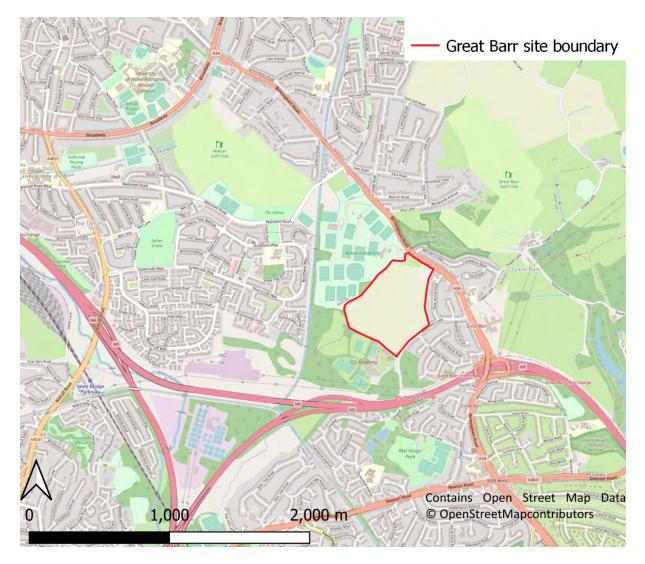
Thank you for your email below.

We have reported flood incidents within the proximity of the site since 1996.

Kind regards

Asif Mussa

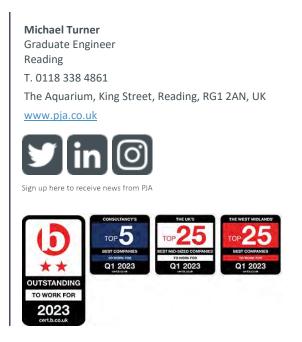
Senior Evaluation Technician Asset Protection Asset Strategy & Planning Chief Engineer, Severn Trent Water


WONDERFUL ON TAP

From: Michael Turner <michael.turner@pja.co.uk>
Sent: 09 August 2023 10:33
To: Asset.Protection <Asset.Protection@severntrent.co.uk>
Subject: [PJA: 06832] Historic Sewer Flood Risk

Caution: This is an external email originating outside Severn Trent. Think before you click on links or open attachments.

Dear Sir / Madam,


PJA have been appointed to provide flood risk and drainage advice for a proposed development at Great Barr, Birmingham. OS Co-ordinates: .403951 , 295476. A Site Location Plan is available below:

We would be grateful if you could provide us with any historical flood records or historical sewer flood information you hold on the Site.

Kind regards,

Michael Turner

Severn Trent Plc (registered number 2366619) and Severn Trent Water Limited (registered number 2366686) (together the "Companies") are both limited companies registered in England & Wales with their registered office at Severn Trent Centre, 2 St John's Street, Coventry, CV1 2LZ This email (which includes any files attached to it) is not contractually binding on its own, is intended solely for the named recipient and may contain CONFIDENTIAL, legally privileged or trade secret information protected by law. If you have received this message in error please delete it and notify us immediately by telephoning +44 2477715000. If you are not the intended recipient you must not use, disclose, distribute, reproduce, retransmit, retain or rely on any information contained in this email. Please note the Companies reserve the right to monitor email communicationsin accordance with applicable law and regulations. To the extent permitted by law, neither the Companies or any of their subsidiaries, nor any employee, director or officer thereof, accepts any liability whatsoever in relation to this email including liability arising from any external breach of security or confidentiality or for virus infection or for statements made by the sender as these are not necessarily made on behalf of the Companies. Reduce waste! Please consider the environment before printing this email